Welcome to iGrow News, Your Source for the World of Indoor Vertical Farming

Start of A New Series of Tests For Plant Cultivation on The Moon And Mars

The EDEN ISS greenhouse uses particularly robust varieties that were selected by the EDEN ISS Project team and from experiments at NASA’s Kennedy Space Center and as part of the VEGGIE project on the ISS

MAY 4, 2021

NASA Seeds Germinate in

DLR’s EDEN ISS Greenhouse

Start of a new series of tests for plant cultivation on the Moon and Mars

Nine weeks of darkness and temperatures down to minus 50 degrees Celsius. Under these harsh conditions of Antarctica, NASA and the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) have begun a joint series of experiments on vegetable cultivation techniques for use on the Moon and Mars. Until early 2022, NASA guest scientist Jess Bunchek will research how future astronauts could grow lettuce, cucumbers, tomatoes, peppers, and herbs, using as little time and energy as possible.

To this end, she will be working at DLR’s EDEN ISS Antarctic greenhouse, where she will put greenhouse technologies and plant varieties to the test. She is also recording any effects the greenhouse and its yield have on the isolated hibernation crew in the perpetual ice. Bunchek is part of the 10-person overwintering crew on Neumayer Station III, operated by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).

First harvest – Lettuce, mustard greens, radishes and herbs

“The polar night will soon begin here on the Antarctic Ekström Ice Shelf. With the nine other members of the overwintering crew, it almost feels like we are alone on another planet,” says Bunchek. “In this hostile world it’s fascinating to see the greenery thrive without soil and under artificial light.”  Bunchek is a botanist from the Kennedy Space Center, where she has primarily supported the VEGGIE project on the International Space Station (ISS) She was able to sow the first seeds in recent weeks, following a technical reconditioning of the EDEN ISS platform conducted by her and the DLR team. The first harvest, which included lettuce, mustard greens, radishes, and various herbs, followed a few days ago.

NASA seeds and new nutrient supply system

The EDEN ISS greenhouse uses particularly robust varieties that were selected by the EDEN ISS Project team and from experiments at NASA’s Kennedy Space Center and as part of the VEGGIE project on the ISS. The DLR/NASA mission also aims to record and compare the growth and yield of the crop varieties under the conditions of the Antarctic greenhouse. An additional focus will be studying which microbes thrive in the greenhouse alongside the cultivated plants.

NASA will also be testing a plant watering concept in the EDEN Module that can operate in u-gravity settings, like the ISS.  The system contains the water and delivers it to the plants by a passive method.  “This will provide a side-by-side comparison with the aeroponically grown plants of EDEN ISS” says Ray Wheeler, plant physiologist at NASA’s Kennedy Space Center. In aeroponic irrigation, the roots of the plants without soil are regularly sprayed with a nutrient solution.

Crew time – a precious commodity

Sowing, harvesting, tending, cleaning, maintaining, calibrating, repairing and conducting scientific activities. Bunchek records every second of her activities in the Antarctic greenhouse with a special time-recording eight-sided die, as crew time will be a precious commodity on future missions to the Moon and Mars. “In an initial test run of the greenhouse during the 2018 mission, we found that operations still took too much time,” explains EDEN ISS project leader Daniel Schubert from the DLR Institute of Space Systems in Bremen. “Now we are working on optimizing processes and procedures. We have learned a lot about operating a greenhouse under extreme conditions. We’re applying all this during the current joint DLR/NASA mission.” In addition to the crew’s time, the focus is on their well-being. The overwinterers regularly answer questions about their eating habits or how the plants affect their mood.  “We hope to increase our understanding of having plants and fresh food for crews in remote, isolated settings like Neumayer III and ultimately for space” says Wheeler.

Eight months in isolation

On 19 January, Jess Bunchek reached the Antarctic continent on board the research vessel Polarstern. Since 19 March, the 10-person overwintering crew has been on their own at Neumayer Station III. “EDEN ISS is an asset for the crew in many ways,” says Tim Heitland, Medical Coordinator and Operations Manager at AWI. “I know from my own overwintering experience just how much you can begin to miss fresh produce. It’s not just about the taste, but also the smells, the colors, and the fascinating fact that something can grow in this inhospitable environment. That’s why there are always volunteers in the overwintering teams to help cultivate and harvest the plants.”  The polar night at Neumayer Station III begins on 21 May, and the first rays of sunlight will not reach the station again until 23 July. Researchers for the summer season and new supplies will end the isolation of this year’s overwintering crew around the beginning of November.

The activities at the EDEN ISS Antarctic greenhouse can be followed on social media using the hashtag #MadeInAntarctica. The Antarctic greenhouse has Facebook and Instagram accounts, as well as a flicker image gallery. Jess Bunchek also writes about her personal experiences of the Antarctica mission in the dedicated DLR blog.

Read More
Indoor Vertical Farming, Hydroponic, NASA IGrow PreOwned Indoor Vertical Farming, Hydroponic, NASA IGrow PreOwned

Space Peppers to Spice Up Astronauts' Diets

Astronauts and cosmonauts spend a lot of time aboard space stations - sometimes more than a year at a time. When you're up there that long, it would be nice to bite into some freshly grown vegetables

Astronauts and cosmonauts spend a lot of time aboard space stations - sometimes more than a year at a time. When you're up there that long, it would be nice to bite into some freshly grown vegetables. Particularly if humans will return to the Moon or even go to Mars, it's essential to be able to grow fresh food there. Researchers are looking into the unique challenges of growing space veggies, learning a thing or two about cultivation on Earth in the process. One of them is Jacob Torres, who works at the Space Crop Production Lab at NASA’s Kennedy Space Center. In a recent webinar, he shared his experiences conducting space agriculture research.

Jeff Kohler, who supports the Technology Transfer Program at NASA and hosted the webinar, said he met Jacob Torres about a year ago, when the latter submitted a proposal for a new plant nutrition system. Jacob was raised in a traditional farming community in New Mexico, so it's not entirely surprising that he ended up working in agriculture, albeit controlled environment agriculture.

Tap to pollinate
Kicking off the webinar with a video shot in one of his plant growth chambers, Jacob explained why (chile) peppers are particularly suitable to grow in space. First of all, there are no pollinators in space - you can't just open up a box of bees inside a space station. "With peppers", Jacob explains, "you can tap on one of the flowers, then a pepper starts to grow." This makes peppers more suitable than crops like cucumbers, which do require pollination. Another advantage is the high nutrient content of peppers, making them a welcome addition to the astronaut diet. And last but not least, peppers are both fresh and spicy, adding extra flavor to space food, which can sometimes taste bland due to the way taste buds behave in space.

Moon and Mars missions
The research Jacob and his team carry out at the Kennedy Space Center, serves astronauts on the International Space Station (where they use systems like Veggie and the Advanced Plant Habitat), but they're also looking at the bigger picture. With the Artemis program, NASA is looking to put people on the Moon again, and they also have their sights set on Mars. On those longer missions, astronauts will spend a lot of time in deep space such as on Gateway space stations, and later on the red planet itself, where they will appreciate having fresh grown food and fresh food will supplement the packaged diet. The main idea behind this is to add more vitamin C, K and B to space traveller's diet, which will be the team's mission for the next 10 to 15 years.

Spare parts
No matter how advanced NASA's technology may be, it's only a matter of time before a part starts to fail. "When this happens on the Moon, you can't just go to a shop to get spare parts, or order them through Amazon Prime - not yet at least", Jacob jokes. So what do you do then? When an acid addition pump in one of Jacob's NFT channels disintegrated, he found out it took two weeks to have a new one shipped. "Hand mixing the pH or stopping the experiment was not an option." Instead he had the disintegrated part 3D printed, and the system was back up and running in no time.

A bit of New Mexico on Mars
With the technical details sorted out, the next step is to figure out what variety of pepper to use. "So we hit up the literature to see what work had already been done and demonstrated. In New Mexico, chile peppers are a big part of the culture, so graduate students and professors have been writing research on that for over a century." Gathering pepper seeds from all over the world, it was found that one particular New Mexico pepper performed really well: Española Improved, a hybrid between Big Jim and Española peppers. Española also happens to be Jacob's hometown - "I'm really stoked about that", he commented.

Red Robin tomatoes growing in the water delivery test bed (DAP 88)

Light recipes
The Advanced Plant Habitat, one of the NASA-developed plant growth systems that Jacob works with, features LED light banks with all frequencies, provided by OSRAM. With the system, colors in LEDs can be adjusted, even the UV, to create recipes for specific crops (leafy green, peppers, and so on). Technology like this is absolutely vital in astrobiology, Jacob explains. "Growing crops won't be a primary thing that astronauts have time to do." In addition to the light recipe system, hyperspectral imaging to monitor crop health will also help them with that, and it may even work better than the human eye, according to Jacob.

Irrigation without gravity
Another issue when growing without gravity is irrigation. When you wring a towel in space, the water just sticks around the towel, as demonstrated in the video below by Canadian astronaut Chris Hadfield. "The same thing happens with roots", Jacob explains. "Existing hydroponic systems are largely inoperable in microgravity." (The current system uses time-released fertilizers, but they would like to use a hydroponic system at some point.)

To find a solution to this problem, several candidate microgravity systems were tested against a control system. "Irrigation systems for microgravity should be sustainable, ideally even with reusable plant medium you don't have to throw away, featuring low heat production and energy use, minimal failure mode (without a pump, that would be awesome), reduced crew interaction, and it should be scalable. You should be able to do science on it, then scale it up to do crop production and grow a lot."

PPTNDS
The Passive Porous Tube Nutrient Delivery System (PPTNDS) was the solution to the irrigation problem, using the capillary force of water to force water up. "You can wick water up, the water evaporates from the tube, and water from the bag then replenishes it."

Jacob and his team used water bags like the ones used on the International Space Station, which they connected in a loop to the hoses. They put seeds on top of the tubes, wrapped them up with wrap, added water, air, light - and the crops started to grow, much to the team's delight.

Jacob grows lettuce, peppers, and tomatoes in the PPTNDS. The Red Robin tomatoes (top left) were still going strong 111 days after planting. The peppers (top right) didn't fare so well, but given that Jacob had forgotten about them for weeks, if not months, it's quite impressive that they still bore fruit.

When compared with the NFT control system, the PPTNDS uses much less water (about 25% of the standard amount of water). With only six plants grown on each system, the PPTNDS crops also used up only 25% of the space used in the control system, and the number of crew interactions is also a lot lower, which is a must in space. And as an added bonus, the PPTNDS also scored better in taste tests.

Back on Earth
So, what does this all mean for the non-astronauts among us? Well, in industrial cultivation, the PPTNDS could see use in the top layers of vertical farms, which can't be visited that often by growers. In education, teachers can use it to teach students about agriculture in a system that basically grows itself, and it could even be marketed as a novelty item to consumers, Jacob believes, using the slogan "Developed by NASA". NASA’s expertise in space and scientific exploration contributes to essential services provided to the American people by other federal agencies, such as weather forecasting and natural resource management. The agency freely shares this unique knowledge and works with institutions around the world.

If you're looking to get involved in the agricultural space race, you can participate in the Space Chile Challenge, to grow the hottest possible space pepper. Later this year, NASA will also open up the Lunar Nutrition Challenge, asking the public, academia and industry to develop and demonstrate food production systems suitable for future space exploration. Registration for that is expected to open in late 2020.

For more information:
NASA Technology Transfer Program
technology.nasa.gov

logo.png

Publication date: Fri 26 Jun 2020
Author: Jan Jacob Mekes
© HortiDaily.com

Read More
Hydroponics, Indoor Vertical Farming, NASA IGrow PreOwned Hydroponics, Indoor Vertical Farming, NASA IGrow PreOwned

Plant Growth Research and Technologies Featured in Upcoming NASA Webinar

NASA’s webinar will feature researcher, Jacob Torres, who will discuss the latest food production research and technologies developed at NASA

The Veggie Lab at NASA’s Kennedy Space Center is a Plant Processing Area - a web of ground research laboratories equipped with plant growth chambers of all sizes and the ability to simulate the International Space Station environment. That along with a team of researchers capable of applying the chemistry, biology, microbiology, and engineering needed to make plants grow in space, makes NASA a one of a kind hub for fulfilling space biology and growing crops in space.

NASA’s webinar will feature researcher, Jacob Torres, who will discuss the latest food production research and technologies developed at NASA. These include a Passive Porous Plant Nutrient System that requires no electricity or moving parts, and a variety of micro-gravity simulation testing systems for plant growth. Also included will some video clips of Jacob inside the lab exhibiting some of his technologies and ongoing research projects. 

The webinar will explain how NASA’s technologies and capabilities are available to industry and other organizations through NASA’s Technology Transfer Program. Also it will introduce NASA’s Centennial Challenge, a competitive program for teams to compete for funding to develop and demonstrate novel technologies, systems or approaches for sustainable advanced plant and food production for long duration deep space exploration missions.

“Before astronauts took that first historic bite of lettuce in space, every piece of equipment involved in growing that lettuce was designed and meticulously tested in the Veggie Lab and other labs at NASA. NASA continues to research methods to improve plant growth and plant nutrition in space”, Jacob Torres comments.

  • Register here for this free live webinar

  • June 23rd 2020 at 2:00 PM (EST)

To learn more about NASA’s Technology Transfer Program, please visit their website. You can also browse their entire technology portfolio here.


Publication date: Thu 21 May 2020

Read More