Welcome to iGrow News, Your Source for the World of Indoor Vertical Farming
WEBINAR: Learning Transfer From The Cannabis Industry To The Vertical Farming Industry
We are thrilled to organize a Webinar focusing on the technical aspects and experience of these experts
MARCH 3, 2021
AT 16:00 Central European Time
ONLINE
Register
Critical Lessons: Learning Transfer from the Cannabis Industry to the Vertical Farming Industry
We are thrilled to organize a Webinar focusing on the technical aspects and experience of these experts:
Our speaker Emil Breza is Co-Founder, President, and CEO of AgricUltra™ Advancements Inc. Bringing together his interdisciplinary technical expertise and many years of product development and innovation he introduced to AgricUltra a PlantFirst™ design approach to create one of the industries most advanced Turn-Key Vertical solutions for Controlled Environment Agriculture applications.
Prior to founding AgricUltra, Emil had years of experience in Process Engineering, the Automotive Industry, Professional consulting, and the Military where he honed his ability to identify the root cause of problems and develop solutions that are outside the box.
Our speaker Buck Young is co-founder and Executive Director at CannTx Life Sciences Inc, a Canadian LP focused on leveraging innovation and science to produce exceptional cannabis products and provide solutions to the industry. He is also the CEO of Saed Technologies Ltd, which develops and licenses technologies related to plant propagation, a Board member of Mary Agrotechnologies, and sits on the management committee for a cannabis botanical drug strategic alliance with Devonian Health Group. He is passionate about translating research findings into commercial outcomes, advancing the adoption of precision agriculture, and understanding nature’s pharmacopeia.
Emil Breza
Buck Young
Dr. Joel Cuello
Please register here, there is only a limited number of tickets available.
Register
TAGS: ADVANTAGES OF VERTICAL FARMING AFRICA AGRITECHNICA AGROSPACE AVF WORKSHOP BRAINSTORM THE ECOSYSTEM DESIGNING THE ECOSYSTEM DLG ECOLOGICALLY ECONOMICALLY EVENT FOOD SAFETY FOOD SECURITY FOOD SYSTEM FOODSYSTEM FOOD TRACEABILITY FRAUNHOFER FRAUNHOFER IME HOW VERTICAL FARMING WORKS HUNGER INFARM INFOGRAPHICS INSPIRATIONAL ITALY MOTIVATION OPPORTUNITIES OPPPORTUNITIES PARTNER EVENT REGIONAL DEVELOPMENT RETAIL ROME RZ SOCIALLY SOUTHAFRICA STORYTELLING SUBMISSION SUMMIT SUPERMARKET SUPPLYCHAIN SUSTAINABILITY THE SIX SESSIONS URBAN AG VERTICAL FARMING WORKSHOP WORKSHOP WARM UP
Bowery’s Founder, Irving Fain, On The Future of Vertical Farming
At one point in the not-so-distant past, vertical farming’s role in our future agricultural system was far from certain. Growing leafy greens in warehouse-like environments controlled by tech seemed like a compelling business, but one that had yet to prove itself either economically or as an important source of food for a growing world population
At one point in the not-so-distant past, vertical farming’s role in our future agricultural system was far from certain. Growing leafy greens in warehouse-like environments controlled by tech seemed like a compelling business, but one that had yet to prove itself either economically or as an important source of food for a growing world population.
That, at least, was a common sentiment Irving Fain, CEO and founder of Bowery, met with when he started his vertical farming company five years ago. “There was a bit of skepticism around it,” he told me over a call recently, suggesting that five years ago, there were a lot more “ifs” than “whens” in terms of vertical farming’s future.
Fain, Bowery, and the entire vertical farming industry get a much warmer reception nowadays. Investment dollars are pouring into the space. Around the world, companies, scientists, and food producers are using the method to not just supply upscale grocery stores with greens but experiment with breeds of produce, feed underserved populations, and grow food in non-arable regions. As Fain suggested when we spoke, the last 12 months seem to have turned those “ifs” into definite “whens.”
Bowery’s last 12 months also illustrate this change. Fain said that Bowery went from under 100 retail locations about a year ago to nearly 700 right now, and will be in more than 1,000 “in the coming months.” Its produce is in a number of food retailers around the Mid-Atlantic and Northeast, including Whole Foods Market, Giant Food, Stop & Shop, Walmart, and Weis Markets. And in 2020, the company experienced “more than 4x growth” with e-commerce partners.
While the pandemic is responsible for some of this popularity, Fain insists it is not the only reason for the eventful year. “It’s definitely bigger than the pandemic,” he said. “What you’re seeing is a food system that’s evolving and [people have a desire] to see transparency and traceability in the food system.” These, he says, are issues the traditional food supply chain isn’t really able to address right now, hence the opportunity for companies like Bowery, which effectively cut multiple steps out of the supply chain.
Bowery grows its greens (lettuces, herbs, and some custom blends) inside industrial spaces where crops are stacked vertically in trays and fed nutrients and water via a hydroponic system. Technology controls all elements of the farm, from the temperature inside to how much light each plants get. The company currently operates two farms, one in New Jersey and the other in Maryland. A third is planned for Pennsylvania.
Technology, in particular, is something Bowery has big plans for. On top of a retail expansion, Bowery also added some notable personnel to its staff, including Injong Rhee, formerly the Internet of Things VP at Google as well a chief technologist at Samsung. Having such technology chops onboard will be vital in order for Bowery to realize many of its ambitions around advanced automation, which has the potential to optimize many parts of the seed-to-store process for vertically grown greens.
For example, Bowery’s farms are equipped with sensors and cameras that are constantly collecting data — “billions” of points, according to the company — that can be used to not just observe the current state of plant health but also predict the most optimal growing conditions for each crop. Elements like temperature, humidity levels, nutrient levels, and light intensity can all be adjusted, via the BoweryOS software, to create those optimal conditions. The end result is more consistent crop production, better yields, more flavorful food, and, ideally, a better nutritional profile for the greens compared to what conventional produce offers.
The system can also, through automation and AI, detect problems with plants. In a recent interview with Venture Beat, Bowery Chief Science Officer Henry Sztul used the example of butterhead lettuce yellowing at the edges during growth. Bowery’s system is technologically advanced enough at this point that it is starting to understand the conditions that create those yellowing edges. That foreknowledge, in turn, will allow growers to adjust the crop “recipe” (see above mixture of lights, temperature, etc.) to avoid the problem.
It took Bowery years to get to this point in terms of what its technology is capable of doing. “The system [for] indoor farming that you choose has a direct impact on the crops you’ll be able to grow, on the margins you’ll be able to generate, and on the return profile of the business itself,” said Fain. “And so being incredibly intentional and thoughtful about what technology you use is something we spent a lot of time on because it has an extraordinarily important economic impact.”
On a less technically complex note, controlled ag from Bowery and others also goes some way towards reinventing the supply food chain. Rather than greens being harvested in, say, Mexico and shipped via a complex distribution process all the way to Baltimore, they are packaged up at the farm and distributed to nearby retailers, usually those within a day’s drive “It is much more sustainable. It is much more efficient, and it’s more reliable, and those things have been important to consumers long before COVID,” said Fain.
Bowery will continue to innovate on both the technology and supply side of its business, as well as with the food itself. The company just launched a new specialty product line that will experiment with different flavors of greens and change frequently.
In terms of tech, Bowery’s latest farm, currently being built in Bethlehem, Pennsylvania, will incorporate even more automation than the company’s two existing farms. That location is slated to open later in 2021. When it does, Bowery will be capable of serving nearly 50 million people within a 200-mile radius.
The company hopes to expand its geographic reach much wider some day, building farms near most major U.S. cities and beyond. Given the increased confidence in the vertical farming sector as a whole, now looks to be the optimal time to move towards those ambitions.
by Jennifer Marston, The Spoon
Is AppHarvest the Future of Farming?
In this video from Motley Fool Live, recorded on Jan. 28, Industry Focus host Nick Sciple and Motley Fool contributor Lou Whiteman discuss AppHarvest, one such SPAC that is looking to disrupt the agriculture industry. Here are the details on what AppHarvest wants to do, and a look at whether the company represents the future of farming.
Special purpose acquisition companies, or SPACs, are red-hot right now, with investors clamoring to get into promising young companies.
In this video from Motley Fool Live, recorded on Jan. 28, Industry Focus host Nick Sciple and Motley Fool contributor Lou Whiteman discuss AppHarvest, one such SPAC that is looking to disrupt the agriculture industry. Here are the details on what AppHarvest wants to do, and a look at whether the company represents the future of farming.
Nick Sciple: One last company I wanted to talk about, Lou, and this is one I think it's -- you pay attention to, but not one I'm super excited to run in and buy. It was a company called AppHarvest. It's coming public via a [SPAC] this year. This vertical farming space. We talked about Gladstone Land buying traditional farmland. AppHarvest is taking a very different approach, trying to lean into some of the ESG-type movements.
Lou Whiteman: Yeah. Let's look at this. It probably wouldn't surprise you that the U.S. is the biggest global farm exporter as we said, but it might surprise you that the Netherlands, the tiny little country, is No. 2. The way they do that is tech: Greenhouse farm structure. AppHarvest has taken that model and brought it to the U.S. They have, I believe, three farms in Appalachia. The pitches can produce 30x the yields using 90% less water. Right now, it's mostly tomatoes and it is early-stage. I don't own this stock either. I love this idea. There's some reasons that I'm not buying in right now that we can get into. But this is fascinating to me. We talked about making the world a better place. This is the company that we need to be successful to make the world a better place. The warning on it is that it is a SPAC. So it's not public yet. Right now, I believe N-O-V-S. That deal should close soon. [Editor's note: The deal has since closed.] I'm not the only one excited about it. I tend not to like to buy IPOs and new companies anyway. I think the caution around buying into the excitement applies here. There is a Martha Stewart video on their website talking up the company, which I love Martha Stewart, but that's a hype level that makes me want to just watch and see what they produce. This is just three little farms in Appalachia right now and a great idea. This was all over my watchlist. I would imagine I would love to hold it at some point, but just be careful because this is, as we saw SPACs last year in other areas, people are very excited about this.
Sciple: Yeah. I think, like we've said, for a lot of these companies, the prospects are great. I think when you look at the reduced water usage, better, environmentally friendly, all those sorts of things. I like that they are in Appalachia. As someone who is from the South, I like it when more rural areas get some people actually investing money there. But again, there's a lot of execution between now and really getting to a place where this is the future of farming and they're going to reach scale and all those sorts of things. But this is a company I'm definitely going to have my radar on and pay attention to as they continue to report earnings. Because you can tell yourself a story about how this type of vertical farming, indoor farming disrupts this traditional model, can be more efficient, cleaner, etc. Something to continue paying attention to as we have more information, because this company, like you said, Lou, isn't all the way public yet. We still got to have this SPAC deal finalized and then we get all our fun SEC filings and quarterly calls and all those sorts of things. Once we have that, I will be very much looking forward to seeing what the company has to say.
Whiteman: Right. Just to finish up along too, the interesting thing here is that it is a proven concept because it has worked elsewhere. The downside of that is that it needed to work there. Netherlands just doesn't have -- and this is an expensive proposition to get started, to get going. There's potential there, but in a country blessed with almost seemingly unlimited farmland for now, for long term it makes sense. But in the short term, it could be a hard thing to really get up and running. I think you're right, just one to watch.
Scientists Made Better-Tasting Basil Through “Cyber Farming”
A better basil exists, but it’s being grown in an environment that resembles something more likely to show up on an episode of Star Trek than in any backyard garden
REUTERS/TOM MIHALEK
By Chase Purdy April 5, 2019
PESTO, CHANG-O
A better basil exists, but it’s being grown in an environment that resembles something more likely to show up on an episode of Star Trek than in any backyard garden.
The team of MIT scientists behind it are calling their process “cyber agriculture,” a method of growing plants in shipping containers retrofitted with lots of high-tech gear that brings crazy levels of precision control to the environment. That entails using complex computers to track a plant’s minor genetic and epigenetic changes over time while searching for the right balance of temperature, humidity, level of ultraviolet light, and light-exposure time, among other things, to create the conditions that will encourage the basil to producer a richer, tastier version of itself. They call it a “climate recipe,” but really it’s using machine learning technology to farm. The details of their work were published April 3 in the journal PLOS ONE.
“We’re really interested in building networked tools that can take a plant’s experience, its phenotype, the set of stresses it encounters, and its genetics, and digitize that to allow us to understand the plant-environment interaction,” said researcher Caleb Harper in a statement.
Most of this research is being conducted in Middleton, Massachusetts, a small town about 20 miles (32 km) north of Boston. It’s there that the MIT team tends to a hydroponic farm of basil plants. They’ve discovered some interesting details: For instance, the plants tend to taste better when they have exposure to light all 24 hours of the day.
“You couldn’t have discovered this any other way. Unless you’re in Antarctica, there isn’t a 24-hour photoperiod to test in the real world,” said John de la Parra, a co-author of the study.
The scientists are making their data available to the public at no charge. Right now, there are companies working on similar high-tech hydroponic farming. Toshiba is churning out lettuce, it’s happening on rooftops in China, and a company called Farm.One is growing food out of basements in Manhattan. But most of these companies keep their techniques under wraps, making it hard for more people to enter the market or for nonprofit initiatives to get off the ground.
“Our tools being open-source, hopefully they will get spread faster and create the ability to do networked science together,” Harper said.
And that could lead to an interesting new era of urban farming, in which cities can more efficiently feed themselves without relying on the costly supply chain networks that currently exist to ship herbs, fruits, vegetables into municipalities from faraway farms.
Photo: Halcyon hydroponics.
MIT’s ‘Cyber-Agriculture’ Optimizes Basil Flavors
April 2, 2019
The days when you could simply grow a basil plant from a seed by placing it on your windowsill and watering it regularly are gone — there’s no point now that machine learning-optimized hydroponic “cyber-agriculture” has produced a superior plant with more robust flavors. The future of pesto is here.
This research didn’t come out of a desire to improve sauces, however. It’s a study from MIT’s Media Lab and the University of Texas at Austin aimed at understanding how to both improve and automate farming.
In the study, published today in PLOS ONE, the question being asked was whether a growing environment could find and execute a growing strategy that resulted in a given goal — in this case, basil with stronger flavors.
Such a task is one with numerous variables to modify — soil type, plant characteristics, watering frequency and volume, lighting and so on — and a measurable outcome: concentration of flavor-producing molecules. That means it’s a natural fit for a machine learning model, which from that variety of inputs can make a prediction as to which will produce the best output.
“We’re really interested in building networked tools that can take a plant’s experience, its phenotype, the set of stresses it encounters, and its genetics, and digitize that to allow us to understand the plant-environment interaction,” explained MIT’s Caleb Harper in a news release. The better you understand those interactions, the better you can design the plant’s lifecycle, perhaps increasing yield, improving flavor or reducing waste.
In this case the team limited the machine learning model to analyzing and switching up the type and duration of light experienced by the plants, with the goal of increasing flavor concentration.
A first round of nine plants had light regimens designed by hand based on prior knowledge of what basil generally likes. The plants were harvested and analyzed. Then a simple model was used to make similar but slightly tweaked regimens that took the results of the first round into account. Then a third, more sophisticated model was created from the data and given significantly more leeway in its ability to recommend changes to the environment.
To the researchers’ surprise, the model recommended a highly extreme measure: Keep the plant’s UV lights on 24/7.
Naturally this isn’t how basil grows in the wild, since, as you may know, there are few places where the sun shines all day long and all night strong. And the arctic and antarctic, while fascinating ecosystems, aren’t known for their flavorful herbs and spices.
Nevertheless, the “recipe” of keeping the lights on was followed (it was an experiment, after all), and incredibly, this produced a massive increase in flavor molecules, doubling the amount found in control plants.
“You couldn’t have discovered this any other way,” said co-author John de la Parra. “Unless you’re in Antarctica, there isn’t a 24-hour photoperiod to test in the real world. You had to have artificial circumstances in order to discover that.”
But while a more flavorful basil is a welcome result, it’s not really the point. The team is more happy that the method yielded good data, validating the platform and software they used.
“You can see this paper as the opening shot for many different things that can be applied, and it’s an exhibition of the power of the tools that we’ve built so far,” said de la Parra. “With systems like ours, we can vastly increase the amount of knowledge that can be gained much more quickly.”
If we’re going to feed the world, it’s not going to be done with amber waves of grain, i.e. with traditional farming methods. Vertical, hydroponic, computer-optimized — we’ll need all these advances and more to bring food production into the 21st century.
Image Credits: Melanie Gonick / MIT